logotip ua5.org
UA5.ORG

Методичні матеріали з інформатики
 
 
      Головна Зв'язок Статистика Закладки Пошук      
 
 
 
Розділи
 

Популярні публікації
 

Рекомендовані матеріали
 

Рекламні матеріали
 

 

Поняття системи числення


Основи програмування
     
     
   
 

Ми зазвичай ведемо рахунок десятками (10 одиниць утворює десятку, 10 десятків - сотню і т.д.), тобто ведемо рахунок у десятковій системі числення. Але існують і інші системи числення.

Під системою числення розуміють сукупність правил зображення чисел цифровими знаками.

Розрізняють позиційні й непозиційні системи числення.

У непозиційних системах числення вага знака не залежить від його положення по відношенню до інших знаків у числі.

У римській системі числення: I - 1, V - 5, X - 10 і т. д.

В одиничній системі числення число сім представляється сімома одиничками: (7)10 = (1111111)1

Недоліками непозиційних систем числення є:

  • громіздкість зображення чисел;
  • труднощі у виконанні операцій.

Для позиційних систем числення характерні наочність зображення чисел і відносна простота виконання операцій.

Система числення називається позиційною, якщо під час запису числа одна і таж цифра має різне значення, яке визначається місцем (позицією), на якому вона знаходиться.

У позиційній системі для запису числа використовується обмежена кількість знаків - цифр, яка визначає назву системи числення і називається її основою.

Араби взяли за основу число 10, тому що в якості обчислювального пристрою вони використовували 10 пальців рук. В десятковій системі для запису числа використовується десять цифр від 0 до 9 і основою є число 10. Число у цій системі числення можна представити у вигляді степенів десяти:

(237)10 = 2·102+3·101 + 7·100
(77,3)10 = 7·101 + 7·100 + 3·10-1

Системи числення, що використовуються в комп'ютерах

Система числення з основою N=2 є позиційною системою числення і нічим не відрізняється від позиційної система числення з будь-якою основою. Але для комп'ютера ця система числення має перевагу - її алфавіт має всього два символи. Тобто, для фіксації її символів достатньо мати деякий пристрій, що може мати два суттєво різних і стійких стани.

Людині більш звична десяткова система, у якій відпрацьовані прийоми записування чисел по його імені, визначення імені по запису, визначення ваги числа по його запису й імені, відпрацьовані прийоми додавання, віднімання, множення й ділення будь-яких чисел. У двійковому записі числа важко одразу визначити його значення, немає поняття імені саме двійкового числа, важко зіставити ланцюжок 1 і 0 із його змістом. Таким чином виникає потреба перетворювати двійкові записи у десяткові і навпаки.

Приклади:

(5)10 = (101)2 = 1·22 + 0·21 + 1·20
(15)10 = (1111)2 = 1·23 + 1·22 + 1·21 + 1·20

У програмуванні вагоме місце займають вісімкова й шістнадцяткова системи числення, які використовуються для скороченого запису двійкових кодів.

У вісімковій системі числення в якості цифр використовують цифри: 0, 1, 2, 3, 4, 5, 6, 7. В шістнадцятковій системі потрібно 16 символів, в якості яких використовують арабські цифри і п'ять букв латинського алфавіту, що утворюють послідовність: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, А, В, C, D, E, F.

Приклади:

(75,67)8 = 7·81 + 5·80 + 6·8-1 + 7·8-2
(1FC,B)16 = 1·162 + 15·161 + 12·160 + 11·16-1

Десяткові еквіваленти символів A, B, C, D, E, F:

A = 10, B = 11, C = 12, D = 13, E = 14, F = 15


 
   
 
 
Інші статті за темою:

  • Двійкове кодування числової інформації
  • Десяткова система числення
  • Переведення чисел із десяткової системи числення у будь-яку іншу
  • Римська система числення
  • Інші позиційні системи числення


  •  
         
         

     
     
     
    Яндекс.Метрика
     

     
         
      Здесь находится аттестат нашего WM идентификатора 105631738772
    Проверить аттестат

    Copyright © 2008-2017 UA5.org